
MODULAR CURVES

MAARTEN DERICKX

Abstract. These are lecture notes for a course on modular curves given in
Zagreb. The language of schemes is avoided in order to keep the notes accessible
to an audience that is familiar with varieties but not with schemes.
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1. Background

1.1. Notations.

• If K is a field and V1, V2 are vector spaces over K then IsoK-vec(V1, V2)
denotes the set of isomorphisms between V1 and V2 as K vector spaces.

1



2 MAARTEN DERICKX

• If R is a ring and n > 0 an integer then Mn(R) denotes the set of n by n
matrices.
• If A ∈Mn(R) is a matrix then At denotes its transpose.
• If C is a category then Cop denotes the oposite category. I.e. the category

that has the same objects, but where the direction of all morphisms are
reversed.
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1.2. Varieties.
say something about varieties over non algebraically closed fields as in section 1
of Silverman

1.2.1. Families of varieties.

Definition 1.1 (Family of varieties.). Let S by a variety over a field K. A family
of varieties over S is a pair (X, f) where

i) X is a variety over K,
ii) f : X → S is a regular map,

iii) for every s ∈ S(K) the fiber f−1(s) ⊆ X is a variety over K.

Notation 1.2. Let (X, f) be a family of varieties over S and s ∈ S(K), then
Xs := f−1(s) is used as shorthand notation for the fiber above s.

Note that f−1(s) is always an algebraic subset of X(K). So Definition 1.1(iii) is
equivalent to the fiber f−1(s) being irreducible.

Definition 1.3 (Morphism of families). Let S by a variety over a field K and
(X1, f1), (X2, f2) be two families of varieties over S. A morphism of families from
(X1, f1) to (X2, f2) is a regular map h : X1 → X2 defined over K such that f1 =
f2 ◦ h.

X1 X2

S

h

f1 f2

Let s ∈ S(K) and let hs : X1,s → X2,s denote the restriction of h to the fibers
above s. It follows from Definition 1.3 that hs is a regular map between varieties
over K. Note that if s lies in some field L ⊂ K and K ⊂ L then hs is actually
defined over L.

Notation 1.4. Let (T, f1), (X, f2) be two families of varieties over S, then X(T ) is
shorthand notation for the set of morphisms as in Definition 1.3. Similarly X(S) is
shorthand notation where (T, f1) = (S, IdS).

The notation X(S) also agrees by definition with the set of sections of f2 : X → S
since the commutative diagram in Definition 1.3 reduces to the relation IdS = f2 ◦h
when (T, f1) = (S, IdS).

1.3. Fiber products.

Definition 1.5. Let f : X → Z and g : Y → Z be regular maps between varieties
over a field K. The fiber product of X and Y over Z, if it exists, is a variety X×Z Y
together with commutative diagram of the form

X ×Z Y Y

X Z

i

h g

f
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that satisfied the following universal property. If T is another variety sitting in a
commutative diagram

T Y

X Z,

u

v g

f

then there is a unique φ : T → X ×Z Y making the following diagram commute:

T

X ×Z Y Y

X Z.

u

v

∃!φ

i

h g

f

If a fiber product X ×Z Y exists as in the definition, then it is unique up to
a unique isomorphim as is always the case with objects defined using universal
properties.

Definition 1.6. A cartesian square is a diagram of the form

T Y

X Z,

u

v g

f

such that the map φ from Definition 1.5 is an isomorphsim.

Remark 1.7. Instead of using the language of universal properties, one could also
define the fiber product in terms of a varieties representing a functor. I.e. X ×Z Y ,
if it exists, is the variety representing the contravariant functor

Ff,g : VaropK → Sets

T 7→ {u, v ∈ HomVar(T,X)× HomVar(T, Y ) | f ◦ u = g ◦ v}
Remark 1.8. If the fiber product X ×Z Y exists then f ◦ h = g ◦ i. So the fiber
product X ×Z Y comes equiped with a canonical map f ◦ h = g ◦ i to Z.

Definition 1.9. Let f : X → Z and g : Y → Z be regular maps between varieties
over a field K. Define X ×′Z Y ⊂ X × Y to be the closed subset

X ×′Z Y := {x, y ⊂ X × Y | f(x) = g(y)} .

While X ×′Z Y will always be a union of closed sub-varieties of X × Y over K, it
will not always be a variety. This is because varieties are geometrically irreducible
by definition.

Exercise 1.10. Let K be a field of characteristic > 2. Let X = Y = Z = A1
K and

let f : X → Z and g := Y → Z both be the map A1
K → A1

K given by x → x2.
Show that X ×′Z Y is not irreducible.

Exercise 1.11. Let K be a field of characteristic > 2 and t ∈ K∗ not a square.
Let X = Y = Z = A1

K and let f : X → Z be given by x→ x2 and g := Y → Z be
given x→ tx2. Show that X ×′Z Y is irreducible but not geometrically irreducible.
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Lemma 1.12. If X×′ZY from definition 1.9 is geometrically irreducible then X×′ZY
and furthermore X×′Z Y together with the two projection maps to X and Y satisfies
the universal property of the fiber product.

Proof.
add proof

�

Exercise 1.13. Let S be a variety over a field K and (X1, f1), (X2, f2) be two
families of varieties over S such that the fiber product X1 ×S X2 exists. Show that

(1) X1 ×S X2 → S is a family of varieties over S, where X1 ×S X2 → S is the
map from Remark 1.8,

(2) for all s ∈ S(K) one has (X1 ×S X2)s is isomorphic to X1,s ×X2,s, i.e. the
fiber above s of the fiber product is just the product of the the fibers.

1.4. Group varieties.

Definition 1.14. Let K be a field, a group variety over K is a variety G over K
together with

• a point e ∈ G(K) called the identity element,
• a morphism ι : G→ G defined over K called the inverse map,
• a morphism s : G×G→ G defined over K, called the addition map

such that the usual group axioms hold for e, ι, s for all elements in G(K). To be
precise for all a, b, c ∈ G(K) one has

• s(a, e) = a = s(e, a) (e is an identity element),
• s(s(a, b), c)) = s(a, s(b, c)) (s is associative),
• s(ι(a), a) = e = s(a, ι(a)) (ι is an inverse).

If furthermore s is symmetric, i.e. s(a, b) = s(b, a), then G is called an abelian
group variety.

Lemma 1.15. Let G be a group variety over a field K and L ⊂ K be a subfield
containing K. Then G(L) with the operationse, ι, s is a group.

Proof. This follows immediately from the definition. �

Example 1.16. Let K be a field and n an integer. Then An can be given the
structure of a group variety over K by defining e := (0, 0, . . . , 0) ∈ An(K),

s : An × An →An (1.1)

((a1, a2, . . . , an), (b1, b2, . . . , bn)) 7→(a1 + b1, a2 + b2, . . . , an + an) and (1.2)

ι : An →An (1.3)

(a1, a2, . . . , an), 7→(−a1,−a2, . . . ,−an). (1.4)

Notice that the usual bijection An(K) ∼= Kn is actually a group isomorphism where
the left hand side has the group law coming from the group variety structure and
the right hand right hand side has is just coordinate wise addition in K.

Definition 1.17. Let (G1, e1, ι1, s1), (G2, e2, ι2, s2) be group varieties over a field K.
Then a group variety homomorphism over K is morphism φ : G1 → G2 of varieties
defined over K such that

• φ(e1) = e2
• for all a, b ∈ G1(K) the relation φ(s1(a, b)) = s2(φ(a), φ(b)) holds.
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The set of all group variety homomorphisms overK is denoted by Homgrp-var(G1, G2).

Notice the absence of a compatibility condition for the inverse map, the reason for
this omission is that inverse of an element is unique. And hence the compatibility
φ(ι(a)) = ι(φ(a)) follows from the group variety and group variety homomorphism
axioms.

Lemma 1.18. Let φ : G1 → G2 be a group variety homomorphism over a field K
and L ⊂ K be a subfield containing K. Then φ induces a group homomorphism
G1(L)→ G2(L).

Proof. This follows immediately from the definition. �

Exercise 1.19. Let K be a field of characteristic 0. Show that Homgrp-var(A1
K ,A1

K)
consists of the linear polynomials ax ∈ K[x] (hint: Hom(A1

K ,A1
K) ∼= K[x]).

1.5. Some group theory.

Definition 1.20. Let G be a group and let s : G × G → G be associated group
law on G. Then Gop is defined to be the group whose underlying set and identity
element are the same as that of G but whose group law is given by

mop : G×G→G
g, h 7→m(h, g)

Definition 1.21. Let G be a group with identity element e and S be a set. Then
a left group action of G on S is a map ρ : G×S → S such that for all g, h ∈ G and
s ∈ S:

• ρ(e, s) = s
• ρ(g, ρ(h, s)) = ρ(gh, s)

Similarly a right group action of G on S is a map ρ : S × G → S such that for all
g, h ∈ G and s ∈ S:

• ρ(s, e) = s
• ρ(ρ(s, h), g) = ρ(s, hg)

Lemma 1.22. Let G be a group and S be a set and let ρ : G × S → S be an
arbitrary map. Then the following are equivalent:

• ρ is a left action of G on S
• The image of the map

fρ : G→Hom(S, S)

g 7→(s 7→ ρ(g, s))

is contained in Aut(S) ⊂ Hom(S, S) and the induced map fρ : G→ Aut(S)
is a group homomorphism.

Proof. Note that if ρ is a group action then fρ(g
−1) is the inverse of fρ(g), which

shows that fρ(g) ∈ Aut(S). The rest of the proof is a relatively straightforward
rewriting of the definitions of group action and group homomorphisms. �

The above lemma looks slightly different for right group actions.

Lemma 1.23. Let G be a group and S be a set and let ρ : S × G → S be an
arbitrary map. Then the following are equivalent:
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• ρ is a right action of G on S
• The image of the map

fρ : Gop →Hom(S, S)

g 7→(s 7→ ρ(s, g))

is contained in Aut(S) ⊂ Hom(S, S) and the induced map fρ : Gop → Aut(S)
is a group homomorphism.

Proof. Similar to that of lemma 1.22. �

Definition 1.24. Let ρ : G× S → S be a left action of the group G on the set S
and let s ∈ S. Then the stabalizer of s in G is defined as

stabG(s) := {g ∈ G | ρ(g, s) = s}
Lemma 1.25. Let ρ : G× S → S be a left action of the group G on the set S and
let s ∈ S, then stabG(s) is a subgroup of G.

Proof. If ρ(g, s) = s and ρ(h, s) = s then ρ(gh, s) = ρ(g, ρ(h, s)) = s. �

Lemma 1.26. Let G be a group, and let S1 and S2 be sets with a left G action. Let
C ⊂ S2 be a set of representatives of G\S2. Then the map

φ :
∐
s2∈C

stabG(s2)\S1 →G\(S1 × S2)

stabG(s2)s1 7→G(s1, s2)

is well defined and bijective.

Proof. For well it being well defined we need to show that it doesn’t depend on the
representative s1 that was chosen for the orbit stabG(s2)s1. Now suppose gs1 ∈
stabG(s2)s1 with g ∈ stabG(s2) is another element in the same orbit then

φ(stabG(s2)gs1) = G(gs1, s2) = Gg(s1, g
−1s2) = G(s1, s2) = φ(stabG(s2)s1).

To show it is surjective, let G(s1, s2) ∈ G\(S1×S2) be an arbitrary. Since C is a
set of representatives of G\S2 we can find a s′2 ∈ C and g ∈ G such that s2 = gs′2.
Now surjetivity follows since

G(s1, s2) = G(s1, gs
′
2) = Gg(g−1s1, s

′
2) = φ(stabG(s′2)g

−1s1).

For injectivity let s1, s
′
1 ∈ S and s2, s

′
2 ∈ C. If stabG(s2)s1 and stabG(s′2)s

′
1 map

to the same element in G\(S1 × S2) then s2 and s′2 must by in the same G orbit.
However since C consists of representatives of G\S2 this forces s2 = s′2. Since we
have s2 = s′2 the equality G(s1, s2) = G(s′1, s

′
2) is equivalent to s′1 = gs1 for some

g ∈ stabG(s2) showing that stabG(s2)s1 = stabG(s′2)s
′
1. �

1.6. Adeles.

2. Elliptic curves

2.1. Elliptic curves of arbitrary fields. The following is the abstract definition
of elliptic curve

Definition 2.1. Let K be a field. An elliptic curve over K is a pair (E, 0) where
E is a smooth proper and geometrically irreducible curve of genus 1 defined over
K and 0 ∈ E(K) is a point. A morphism of elliptic curves φ : (E1, 0) → (E2, 0) is
a morphism of varieties φ : E1 → E2 such that φ(0) = 0.
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Note that often when talking about elliptic curves, the element 0 ∈ E(K) is
understood to be implicitly part of the data. And one writes E instead of (E, 0).

2.1.1. Weierstrass models. The above definition is quite abstract. However, some-
times it is easier to work with explicit equations for elliptic curves. The goal of
this subsection is to show that every elliptic curve over a field can be given by a
Weierstrass model.

Definition 2.2 (Weierstrass model). Let a := (a1, a2, a3, a4, a6) ∈ K5 then define
EA ⊂ P2 to be the curve given by

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

The point 0 on E is defined the point where (x : y : z) = (0 : 1 : 0).

Note there is no a5 in the above definition. This is on purpose and will become
clear later. Before we continue we need to define a quantity called the discriminant.

Definition 2.3 (Discriminant). The b-invariants b2, b4, b6, b8 ∈ Z[a1, a2, a3, a4, a6]
and the discriminant ∆ ∈ Z[a1, a2, a3, a4, a6] are defined as follows:

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

If R is a ring and a := (a′1, a
′
2, a
′
3, a
′
4, a
′
6) ∈ R5 then ∆a will be shorthand notation

for ∆(a′1, a
′
2, a
′
3, a
′
4, a
′
6).

The first hint of why the 5-th coefficient is labeled a6 and not a5 is already visible
in this definition. Namely if we see Z[a1, a2, a3, a4, a6] as a weighted polynomial ring
where ai has weight i, then the bi are homogeneous of weight i and ∆ is homogeneous
of weight 12.

Proposition 2.4 (A smooth Weierstrass model is an elliptic curve). Let K be a
field and a := (a1, a2, a3, a4, a6) ∈ K5 then the following are equivalent:

- The pair (Ea, 0) is an elliptic curve.
- The curve Ea is smooth.
- ∆a 6= 0.

Proof. add reference to silverman

�

Theorem 2.5 (Existence of Weierstrass model). Let (E, 0) be an elliptic curve over
K then there is an a := (a1, a2, a3, a4, a6) ∈ K5 such that

∆a 6= 0 and (E, 0) ∼= (Ea, 0).

Proof. add reference to silverman

�
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Proposition 2.6 (Isomorphisms between Weierstrass models). Let K be a field,
a := (a1, a2, a3, a4, a6) and a′ := (a′1, a

′
2, a
′
3, a
′
4, a
′
6) elements of K5 such that ∆a 6= 0

and ∆a′ 6= 0 . If f : Ea → Ea′ is an isomorphism of elliptic curves. Then there are
u ∈ K∗ and r, s, t ∈ K such that f = fu,r,s,t where fu,r,s,t is given by

fu,r,s,t : Ea → Ea′ (2.1)

(x : y : z) 7→ (u2x+ rz : u3y + u2sx+ tz : z)

Proof.
add reference to silverman and say that we use an inverse convention

�

Note that there is also the following converse to the above proposition.

Proposition 2.7 (Change of Weierstrass model). Let K be a field, a := (a1, a2, a3, a4, a6) ∈
K5, u ∈ K∗ and r, s, t ∈ K. Define

a′1 := ua1 − 2s

a′2 := u2a2 + usa1 − s2 − 3r

a′3 := u3a3 − a′1r − 2t

a′4 := u4a4 − 2a′2r + u3sa3 + uta1 − 3r2 − 2st

a′6 := u6a6 − a′4r − a′2r2 +
(
u3t
)
a3 − r3 − t2

a′ := (a′1, a
′
2, a
′
3, a
′
4, a
′
6).

(2.2)

Then fu,r,s,t from eq. (2.1) defines an isomorphism between Ea and Ea′.

Proof.
add reference to silverman and say that we use an inverse convention

�

2.1.2. Group law.

2.1.3. Level structures.

Definition 2.8 (Level structures). Let E be an elliptic curve over a field K and
let N be an integer.

i) Assume N is invertible in K then a full level N structure on E is a group
isomorphism φ : (Z/NZ)2 → E[N ](K),

ii) Assume N is invertible in K a a point of order N on E is an injective group
homomorphism φ : Z/NZ→ E[N ](K),

iii) a a point of order ≥ N on E is an group homomorphism φ : Z→ E[N ](K)
whose image has cardinality ≥ N .

Remark 2.9. Since E[N ](K) ∼= (Z/NZ)2, Definition 2.8(i) is equivalent to giving
P,Q ∈ E[N ](K) such that they together generate E[N ](K). Definition 2.8(ii) is
equivalent to giving a point P ∈ E[N ](K) of order N , and definition 2.8(iii) is
equivalent to giving a P ∈ E[N ](K) of order ≥ N .

Definition 2.10 (Morphism with level structure). Let N be an integer that is
invertible in K and let (E1, φ1), (E2, φ2) two elliptic curves with full level N
structure over K. Then a morphism of elliptic curves with full level N struc-
ture f : (E1, φ1) → (E2, φ2) is morphism f : E1 → E2 of elliptic curves such that
f ◦ φ1 = φ2.
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2.2. Families of elliptic curves.

Definition 2.11 (Family of elliptic curves). Let S be a variety over a field K. An
elliptic curve over S or a family of elliptic curves over S is a triple (E, f, 0) where

i) E is a variety over K,
ii) f : E → S is a smooth and proper map,

iii) 0 is a section of f ; i.e. a regular map 0 : S → E such that f ◦ 0 = IdS,
iv) for all s ∈ S(K) the fiber Es := f−1(s) above s is a curve over K that is

irreducible and of genus 1.

Let L ⊆ K be a field extension of K and s ∈ S(L). Note that since f is smooth
and proper the fiber Es will be smooth and proper over L. It is also geometrically
reduced and of genus 1 by definition and 0s will be a point on Es. In particular for
every s ∈ S(L) the pair (Es, 0s) is an elliptic curve over L according to definition 2.1.
Also the pair (E, f) is a family of varieties as in Definition 1.1.

Definition 2.12 (Morphism of families of elliptic curves). Let (E1, f1, 0) and (E2, f2, 0)
be elliptic curve curves over S then a morphism of families of elliptic curves over
S is a regular map h : E1 → E2 such that f1 = f2 ◦ h and 0 = h ◦ 0. I.e. h should
be such that the following two diagrams commute:

E1 E2

S

h

f1 f2

E1 E2

S .

h

0 0

The first commutative diagram, i.e. the relation f1 = f2 ◦ h, ensures that h is a
morphsim of families of varieties (Definition 1.3). While the commutative diagram,
ie. 0 = h ◦ 0 ensures that for all s ∈ S(K) one has hs(0s) = 0s. This means that
on fibers hs is not just a morphisms of varieties, but actually a morphism of elliptic
curves as in Definition 2.1.

2.2.1. Weierstrass models. Note that elliptic families do not always admit a global
Weierstrass model. However, they do admit a Weierstrass model locally. As we will
explain in this section.

However before doing this we first need to

Definition 2.13 (Weierstrass model). Let S be a variety over a field K, and let
a := (a1, a2, a3, a4, a6) where a1, a2, a3, a4, a6 ∈ Γ(S,OS) be regular functions such
that for all s ∈ S(K) one has ∆a(s) 6= 0 (or equivalently ∆a ∈ Γ(S,OS)∗ ). Then
the Weierstrass-Model with invariants a := a1, a2, a3, a4, a6 is defined to be the triple
(Ea, f, 0) over S where,

- Ea ⊂ P2
K × S is the curve given by

y2z + a1(s)xyz + a3(s)yz
2 = x3 + a2(s)x

2z + a4(s)xz
2 + a6(s)z

3.

- The morphism f : Ea → S is projection onto the second coordinate.
- 0 : S → Ea is the morphism s 7→ ((x : y : z), s).

Proposition 2.14 (A Weierstrass model over S defines family of elliptic curves).
The triple (Ea1,a2,a3,a4,a6 , f, 0) of definition 2.13 is a family of elliptic curves as in
definition 2.11.
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Proof. add reference to Katz-Mazur?

�

Proposition 2.15 (Existence of local Weierstrass model). Let (E, f, 0) be a family
of elliptic curve over a variety S and s ∈ S. Then there exists an affine open U ⊂ S
with s ∈ U and regular functions a1, a2, a3, a4, a6 ∈ Γ(U,OU) such that

∆a1,a2,a3,a4,a6 ∈ Γ(S,OS)∗ and (EU , f, 0) ∼= (Ea1,a2,a3,a4,a6 , f, 0).

Proof. add reference to Katz-Mazur?

�

say something about isomorphisms between weierstrass models again?

Give an example of something that doesn’t have a global Weierstrass model.

2.2.2. Group law.

2.2.3. Level structures. It turns out that for defining level structures for families it
is more convenient to work with the alternative way of defining level structures as
in Remark 2.9.

Definition 2.16 (Level structures). Let S be a variety over a field K, let E be a
family of an elliptic curves over S and let N be an integer.

i) Assume N is invertible in K, a full level N structure on E is a pair of
points P,Q ∈ E[N ](S) such that for all s ∈ S(K) the points Ps, Qs generate
Es[N ](K).

ii) Assume N is invertible in K, a a point of order N on E is an element
P ∈ E[N ](S) such that for all s ∈ S(K) the point Ps is of order N in
Es(K).

iii) a a point of order ≥ N on E is an element P ∈ E(S) such that for all
s ∈ S(K) the point Ps is of order ≥ N in Es(K).

Definition 2.17.
define morphisms of families of elliptic curves with level structure (is this actu-
ally needed)

2.2.4. Examples.

Example 2.18 (A family of elliptic curves with point of order ≥ 4). Let K be a
field. Let b, c be coordinates on A2. Define

∆(b, c) := (−1) · b3 · (c4 + 8bc2 − 3c3 + 16b2 + 20bc+ 3c2 − b− c) ∈ K[b, c].

Let Y≥(4) ⊂ A2
K be the open subvariety where ∆(b, c) 6= 0. Define E≥(4) ⊂

P2
K × Y≥(4) by

E≥(4) : y2z + (1− c)xyz − byz2 = x3 − bx2z
Let f : E≥(4)→ Y≥(4) be projection onto the second coordinate. Then

0 : Y≥(4)→ E≥(4)

(b, c) 7→ ((0 : 1 : 0), (b, c))
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is a section of f , and the triple (E, f, 0) is a family of elliptic curves over Y≥(4) as
in Definition 2.11. Futhermore

P≥(4) : Y≥(4)→ E≥(4)

(b, c) 7→ ((0 : 0 : 1), (b, c))

Is a point of order ≥ 4 as in Definition 2.16(iii).

2.3. Elliptic curves over C.

Theorem 2.19. Let E be an elliptic curve over C then there is lattice Λ ⊆ C such
that E(C) ∼= C/Λ as Riemann-Surfaces.

Proof. add reference to Silverman

�

Proposition 2.20. Let Λ1,Λ2 ⊂ C then the set of morphisms of elliptic curves
C/Λ1 → C/Λ2 is

HomEC(C/Λ1,C/Λ2) = {z ∈ C | zΛ1 ⊆ Λ2} .
An element z ∈ C defines an isogeny if and only if z 6= 0 and an isomorphism if
and only if zΛ1 = Λ2.

Proof. add reference Silverman

�

3. Modular curves C \ R and the upper half plane

3.1. Möbius transformations.

Definition 3.1 (Möbius transformation). Let a, b, c, d ∈ R with ad − bc 6= 0. A
Möbius transformation is a transformation is an automorphism of C\R of the form

τ 7→ aτ + b

cτ + d
.

The Möbius transformation induce a left group action of GL2(R) on C \ R as
follows:

ρ : GL2(R)× C \ R→ C \ R (3.1)([
a b
c d

]
, τ

)
7→ aτ + b

cτ + d
. (3.2)

Similar to the Möbius transformation we can also define GL2(R) a left action on
IsoR-vec(R2,C), the set of R vectors space isomorphisms between R2 and C.

ρ : GL2(R)× IsoR-vec(R2,C)→ IsoR-vec(R2,C) (3.3)

(γ, f) 7→ f ◦ γt. (3.4)

The transpose is there to make it a left action. Indeed, if γ1, γ2 ∈ GL2(R) and
f ∈ IsoR-vec(R2,C) then

ρ(γ1, ρ(γ2, f)) = f ◦ γt2 ◦ γt1 = f ◦ (γ1γ2)
t = ρ(γ1γ2, f).

Without the transpose this would have been a right action.
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Lemma 3.2. The map

T : IsoR-vec(R2,C)→ C \ R (3.5)

f 7→ f(1, 0)

f(0, 1)
(3.6)

if compatible with the GL2(R) left action and induces a bijection IsoR-vec(R2,C)/C∗ →
C \ R.

Proof. First for the compatibility of the GL2(R) action. Let γ := [ a bc d ] ∈ GL2(R)
and write τ1 for f(1, 0) and τ2 for f(0, 1). Then

(f ◦ γt)(1, 0)

(f ◦ γt)(0, 1)
=

(f ◦ γt)(1, 0)

(f ◦ γt)(0, 1)
=
f(a, b)

f(c, d)
=
aτ1 + bτ2
cτ1 + dτ2

=
aτ1/τ2 + b

cτ1/τ2 + d
= γ

(
f(1, 0)

f(0, 1)

)
.

Now for the bijection IsoR-vec(R2,C)/C∗ → C \ R. First note that if λ ∈ C∗ then
T (λf) = T (f) so that T factors through a map T ′ : IsoR-vec(R2,C)/C∗ → C \ R.
One can show that T ′ is bijective by proving that

C \ R→ IsoR-vec(R2,C)

τ 7→ ((a, b) 7→ aτ + b)

is an inverse of T ′. �

3.2. A hint towards Shimura varieties.

3.2.1. The circle group.

Definition 3.3. The circle group is the group variety S ⊆ A3
R over R given by the

equation (a2 + b2)t − 1. The identity element is given (a, b, t) = (1, 0, 1) and the
multiplication and inverse maps are given by

s : S× S→S
(a, b, t)(a′, b′, t′) 7→(aa′ − bb′, ab′ + ba′, tt)

ι : S→S
(a, b, t) 7→(at,−bt, a2 + b2)

Exercise 3.4. Show that the circle group satisfies the axioms of a group variety.

Exercise 3.5. Let φ be defined by

φ : C∗ →S(R)

(a+ bi) 7→(a, b, (a2 + b2)−1).

Show that φ is a group homomorphism.

4. Moduli problems

4.1. The Category EllK.
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Definition 4.1. The category EllK is defined to be the category where objects
are families of elliptic curves f : E → S. Morphisms between f1 : E1 → S1 and
f2 : E2 → S2 are pairs (h, g) with h : E1 → E2 and g : S1 → S2 such that the square

E1 E2

S1 S2,

h

f1 f2

g

is cartesian as in Definition 1.6.

Notation 4.2. We will often simply write E/S for an object in EllK , and under-
stand that the regular map f : E → S is implicitly part of the data.

Exercise 4.3. Show that EllK actually is a category. For example to show that
composition in this category is well defined one needs to show that if

E1 E2

S1 S2,

h

f1 f2

g

and

E2 E3

S2 S3,

h′

f2 f3

g′

are cartesian squares, then

E1 E3

S1 S3

h′◦h

f1 f3

g′◦g

is cartesian as well.

4.2. Moduli problems.

Definition 4.4. A moduli problem of elliptic curves is a contravariant functor

P : EllopK → Sets .

The level structures from Definition 2.16 can be used to define the following
moduli problems:

Definition 4.5. Let K be a field and N be an integer, then moduli problems [Γ(N)],
[Γ1(N)] and [Γ≥(N)] are defined as follows; where N is assumed to be invertible in
K for the definition of [Γ(N)] and [Γ1(N)]:

[Γ(N)] : EllK → Sets

E/S 7→ {P,Q ∈ E(S) | P,Q define a full level structure on E}
[Γ1(N)] : EllK → Sets

E/S 7→ {P ∈ E(S) | P a point of order N}
[Γ≥(N)] : EllK → Sets

E/S 7→ {P ∈ E(S) | P a point of order ≥ N}

Exercise 4.6. In Definition 4.5 the functors [Γ(N)], [Γ1(N)] and [Γ≥(N)] were only
defined on sets, and not on homomorphisms. The goal of this exercise is to also
describe what the functors do on morphisms.
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(1) Suppose (h, g) : E1/S1 → E2/S2 is a morphism in EllK , i.e. there is a
cartesian diagram of the shape:

E1 E2

S1 S2,

h

f1 f2

g

Let P ∈ E2(S2), use the universal property of the fiber product to show that
there is a unique point P ′ fitting in to the commutative diagram

E1 E2

S1 S2,

h

f1 f2P ′

g

P

(2) For (h, g) : E1/S1 → E2/S2 and P ∈ E(S) define (h, g)∗(P ) := P ′ where P ′

is the point from (1). And view (h, g)∗ as a map E2(S2)→ E1(S1). Define

[Γ(N)](h, g) : [Γ(N)](E2, S2)→ [Γ(N)](E1, S1)

(P,Q) 7→ ((h, g)∗(P ), (h, g)∗(Q))

Show that [Γ(N)](h, g) is a well defined map of sets, that turns [Γ(N)] into
a functor. Similarly for [Γ1(N)] and [Γ≥(N)].

Todo list

say something about varieties over non algebraically closed fields as in section
1 of Silverman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

add proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
add reference to silverman . . . . . . . . . . . . . . . . . . . . . . . . . . 8
add reference to silverman . . . . . . . . . . . . . . . . . . . . . . . . . . 8
add reference to silverman and say that we use an inverse convention . . . . 9
add reference to silverman and say that we use an inverse convention . . . . 9
add reference to Katz-Mazur? . . . . . . . . . . . . . . . . . . . . . . . . 11
add reference to Katz-Mazur? . . . . . . . . . . . . . . . . . . . . . . . . 11
say something about isomorphisms between weierstrass models again? . . . 11
Give an example of something that doesn’t have a global Weierstrass model. 11
define morphisms of families of elliptic curves with level structure (is this

actually needed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
add reference to Silverman . . . . . . . . . . . . . . . . . . . . . . . . . . 12
add reference Silverman . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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